Q. If sum of two integer is 14 and if one of them is 8 then find other integer. Ans: Well, this is very simple. Simply, one integer is 8 and sum of two integers is 14. So, we need to subtract the number 8 from their sum of 14 to get the second number. So, the second number is: 14 - 8 = 6 C-Program of this task Code---> #include<stdio.h> int main () { int num1 = 8 , num2 , sum = 14 ; num2 = sum - num1 ; printf ( "The second number is: %d" , num2 ); return 0 ; }
Write a C program to find the root of equation using Newton Raphson Method. Equation: 2x^3-6x^2+6x-1
In this C program we will find the root of equation using Newton Raphson Method. The equation is: 2x^3-6x^2+6x-1
The allowed error is: 0.001
Introduction:
Introduction:From NewtonRaphson Method we know, Xn+1=Xn-[f(x)/f'(x)].Here we consider three functions one to generate the given equation, other to generate the derivative of the given equation. And the other to find out the root of the equation by using Newton Raphson Method. For this here we passes two values given by the users.
input:
a and b, two arbitrary values will be given by the user.output:
The root of the equation.
CODE---->
// c program for implementation of newton raphson method to solve this equation: 2x^3-6x^2+6x-1
#include<stdio.h>
#include<math.h>
//function for the given equation
float fun(float x)
{
return(2*(pow(x,3))-6*(pow(x,2))+6*x-1);
}
//function for the derivative of given function that is 6x^2-12x+6
float diff(float x)
{
return(6*(pow(x,2))-12*x+6);
}
//function to find out the root of the equation
void raphson(float a,float b)
{
float temp=0,k,h;
k=(a+b);
k=k/2;
if(fun(a)*fun(b)>=0)
{
printf("\nWrong input");
}
else
{
do
{ printf("\nXn = %f ",k);
temp=k;
printf(" f(Xn) = %f ",fun(k));
printf(" f'(Xn) = %f ",diff(k));
h=(fun(k)/diff(k));
printf(" h = %f ",h);
k=k-h;
}while(fabs(temp-k)>=0.001);
printf("\nThe ans is: %f",k);
}
}
int main()
{
int a,b;
printf("\nEnter two values: ");
scanf("%d %d",&a,&b);
raphson(a,b);
return 0;
}
Download the C-Program file of this Program.
Download the MS-Word file of this whole assignment with algorithm.
RESULT :
Enter two values: 1 0 Xn = 0.500000 f(Xn) = 0.750000 f'(Xn) = 1.500000 h = 0.500000 Xn = 0.000000 f(Xn) = -1.000000 f'(Xn) = 6.000000 h = -0.166667 Xn = 0.166667 f(Xn) = -0.157407 f'(Xn) = 4.166667 h = -0.037778 Xn = 0.204444 f(Xn) = -0.007028 f'(Xn) = 3.797452 h = -0.001851 Xn = 0.206295 f(Xn) = -0.000016 f'(Xn) = 3.779804 h = -0.000004 The ans is: 0.206299 -------------------------------- Process exited after 6.369 seconds with return value 0 Press any key to continue . . .
Images for better understanding :
Comments
Post a Comment